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Abstract

In this report, we have presented the usage of deep learning methods on a multi-class
classification task of author identification. The dataset used is from an online competition
and consists of texts of varying lengths from three different classical authors of the same
genre. Our aim in this work was to predict probabilities of a text belonging to each author.
We used natural language processing to get high-level features and back-translation as
a data augmentation technique. For modelling, we used deep learning methods - both
recurrent methods (LSTM with and without convolutional layers) as well as simpler models
that were not very deep. We also looked at the impact of dropout regularization and data
augmentation on training. We have also presented an ensemble of these methods and we
have shown that it is possible to achieve good accuracy with good loss in author attribution
task using deep learning. We also deployed our model successfully as an API which can
process texts directly without the need of pre-processing.

Keywords: Author Identification, LSTM, Multi-class classification

1



Contents

List of Tables 3

List of Figures 4

1. Introduction 5

2. Problem Definition 6
2.1 Approach for Solving the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Dataset Description and Experimental Setup 6
3.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4. Pre-processing and Feature Engineering 8
4.1 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5. Deep Neural Networks (Without Recurrent Layers) 12
5.1 Transfer Learning with Pre-trained GloVe Embedding: . . . . . . . . . . . . . 15

6. Recurrent Networks 16

7. An Ensemble of Deep Neural Networks 19

8. Deployment 21

9. Conclusion and Further Work 23

10.References 23

2



List of Tables

1 Data size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Data Format. id: Identifier for the text string. text: texts (variable length).

and author: Corresponding Author. e.g. for id17569, the author is HPL and
the complete text is, "It never once occurred to me that the fumbling might be
a mere mistake." . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Correlation between features and author classes. . . . . . . . . . . . . . . . . 9
4 2-, 3- and 4- gram frequencies for Edgar Allan Poe (EAP class). . . . . . . . . 10
5 2-, 3- and 4- gram frequencies for H.P. Lovercraft (HPL class). . . . . . . . . 11
6 2-, 3- and 4- gram frequencies for Mary Shelley (MWS class). . . . . . . . . . 11
7 Model (Without recurrent layers) Architecture. . . . . . . . . . . . . . . . . . . 13
8 Recurrent Model Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9 Recurrent Model Architecture with Bidirectional and Convolutional layers

(Kernel size=3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
10 Model for TF-IDF and Count-vectorized matrices. . . . . . . . . . . . . . . . . 20
11 Models used in ensemble after cross-validation. . . . . . . . . . . . . . . . . . 20

3



List of Figures

1 Correlation matrix between features and classes. . . . . . . . . . . . . . . . . 8
2 Word cloud for entire training texts. . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Word cloud for EAP (Edgar Allan Poe). . . . . . . . . . . . . . . . . . . . . . . . 9
4 Word cloud for HPL (H.P. Lovecraft). . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Word cloud for MWS (Mary Shelley). . . . . . . . . . . . . . . . . . . . . . . . . 10
6 Distribution of number of words per text sequence for each author. From left

to right - EAP, HPL, MWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7 Model loss (Right) and accuracy (Left) - With back translation (Validation

loss = 0.3128). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8 Model loss (Right) and accuracy (Left) - Without back translation (Validation

loss = 0.368). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9 Model loss (Right) and accuracy (Left) - Without removing stopwords. . . . . 15
10 Model loss (Right) and accuracy (Left) - Without retraining GloVe embedding. 16
11 Model loss (Right) and accuracy (Left) - Retraining GloVe embedding. . . . . 16
12 Model loss (Right) and accuracy (Left) - With dropout. . . . . . . . . . . . . . 17
13 Model loss (Right) and accuracy (Left) - Without the convolutional layer. The

Validation loss increased after the 3rd epochs and the training stopped after
the callback option and did not complete specified 5 epochs. We kept the
model till the 3rd epoch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

14 Model loss (Right) and accuracy (Left) - With the convolutional layer. The val-
idation accuracy (0.88) plateau after the 3rd epochs and same for validation
loss (0.36). We kept the model till the 3rd epoch. . . . . . . . . . . . . . . . . . 19

15 Validation loss (left) and accuracy (Right) for the model trained with TF-IDF.
The validation loss as well as accuracy converges after 1 epoch. . . . . . . . . 20

16 Kaggle submission page for prediction with an ensemble of neural network
outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

17 Model Deployment - API server. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
18 Model Deployment - Web application Interface . . . . . . . . . . . . . . . . . . 22

4



1. Introduction

Spooky author identification1 was an active competition at Kaggle2 from October 25, 2017
to Dec 16, 2017. The data of the competition consists of short texts from three authors,
namely Edgar Allan Poe3, Howard Philips Lovercraft4 and Mary Wollstonecraft Shelley5.
Two of these authors - Edgar Allan Poe and Mary Shelley were contemporaries. The genre
of their works and of the texts in the dataset of this competition is Horror fiction.

The following text is a relatively longer sample from the dataset:

"I wept for a long time untill I saw him about to revive, when horror and misery again
recurred, and the tide of my sensations rolled back to their former channel: with a terror I
could not restrain I sprung up and fled, with winged speed, along the paths of the wood
and across the fields untill nearly dead I reached our house and just ordering the servants
to seek my father at the spot I indicated, I shut myself up in my own room. Mr. Kirwin
charged himself with every care of collecting witnesses and arranging my defence." - Mary
Shelley (Mathilda, 1819).

To procced with the task of author identification, we defined our objective to be the same
as the objective of official competition. The objective of the competition was to predict
authors based on a text sequence. As per the official guidelines of this competition, one has
to predict probabilities of a text to belong to each of the three authors. Thus, the problem
becomes a multi-class classification and we want to compute probability of a text to be
written by an author.

Author identification problem can be traced back to some 19th and 20th works. In 19th

century, physicist Thomas Mendenhall analysed the works of Shakespeare, Marlowe and
Bacon based on the word frequencies of each author, essentially developing a writing style
for each author. His work was one of the first pioneering works of stylometry. "Stylome-
try is the application of quantitative analysis, primarily to written language, to identify
variations in style." [22]. Different authors have different writing styles and these styles
can aid in linguistically analysing texts [4] [20]. Further, it is also possible to quantify and
statistically analyse these writing styles [3] [21]. Now-a-days, With the advent of natural
language processing techniques and the advancements made in deep learning especially in
recurrent networks, there has been many research works in the area of text classification
and also specifically on the author attribution [13][25][11][10][26]. In particular recurrent
networks such as LSTM and GRU are extensively used in the text classification [2][8].
[18] uses TF-IDF and deep learning for author identification. Inspired by this work as
well as other stated works, we focused on a good pre-processing and data augmentation

1Website of the competition: https://www.kaggle.com/c/spooky-author-identification
2Kaggle is an online community of machine learning engineers and data scientists: https://www.kaggle.com
3More on Edgar Allan Poe: https://en.wikipedia.org/wiki/Edgar_Allan_Poe
4More on H.P. Lovecraft: https://en.wikipedia.org/wiki/H._P._Lovecraft
5More on Mary Shelley https://en.wikipedia.org/wiki/Mary_Shelley
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techniques along with using recurrent as well as not recurrent methods to fulfill our task.
We formulate our task in the following section, thereafter we have discussed the dataset as
well as our objective function.

2. Problem Definition

In this section, we have defined our problem as well as our approach to solve it.

Author identification problem can be formulated as follows: Given a training set {S1,S2, ...,SN },
where each set Si; i ∈ [0, N] is a text sequence, and a set of authors {A1, A2, A3, ...Am} where
each A j; j ∈ [1,m] represents an author, construct a method to compute a set of probabilties
{pA1

i , pA1
i , ..., pAm

i } for a new text sequence St while minimizing some objective function O,

where pA j
i is the probability of St to be written by author A j. For our dataset, we have

defined our objective O in the Equation 3.2.

2.1 Approach for Solving the Problem

We approached our problem as a multi-class text classification. We utilized various pre-
processing as well as data augmentation techniques as described in the section 4. Based
on these, we started with the simplest models keeping in mind the Occam’s razor 6 and
thereafter moved on to advanced recurrent and ensemble models. To build an ensemble,
we used classifiers that do not by themselves capture enough information but when trained
to do independent tasks, they provided better classification results.

3. Dataset Description and Experimental Setup

The dataset provided in the competition is divided into two parts - train and test.

Train data Test data size
19579×3 8392×3

Table 1: Data size.

Throughout the report, EAP, HPL and MWS refer to Edgar Allan Poe, H.P. Lovecraft and
Mary Shelly respectively.

The training data is labelled and is of the following format:

6Occam’s razor (Novacula Occami): The species should not be multiplied without necessity.
(https://www.britannica.com/topic/Occams-razor)
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id text author
id26305 This process, however, afforded me no means of... EAP
id17569 It never once occurred to me that the fumbling... HPL
id11008 In his left hand was a gold snuff box, from wh... EAP
id27763 How lovely is spring As we looked from Windsor... MWS

Table 2: Data Format. id: Identifier for the text string. text: texts (variable length). and
author: Corresponding Author. e.g. for id17569, the author is HPL and the complete text
is, "It never once occurred to me that the fumbling might be a mere mistake."

One example text for each of the author:
EAP: "Milder I half smiled in my agony as I thought of such application of such a term."
HPL: "It was not allied to the European witch cult, and was virtually unknown beyond its
members"
MWS: "Whither does this lead?"

3.1 Performance Evaluation

For training our models, we used categorical cross entropy, also known as multi class log
loss. If we have N examples and M classes, and the computed probability of ith example to
belong to class j is pi j, the loss can be defined as:

L =− 1
N

N∑
i=1

M∑
j=1

y j
i log(p j

i ), (3.1)

where y j
i = 1, if i is in class j, else y j

i = 0.

In our problem, we have three classes, namely EAP, HPL and MWS, so the loss function is,

L =− 1
N

N∑
i=1

yEAP
i log(pEAP

i )+ yHPL
i log(pHPL

i )+ yMWS
i log(pMWS

i ), (3.2)

This is also the function used by the competition to assess performance on the test set.
Two losses are calculated on different subsets of the test set, providing namely the public
and private score. When this competition was active, only the public score was given at
the time of submissions. For the final ranking, the competition used private scores for two
best public score submissions. During our evaluation, we, therefore looked at public scores
and for our final evaluation, we looked at the private scores as well as deviation of our
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final model(s) from the public score. This deviation between public and private scores will
be interesting to check the performance of model on different sets of data. We also did
hyperparamter tuning as well as cross-validation to get the best generalized models. In
the following section, we have presented our pre-processing as well as data augmentation
method.

4. Pre-processing and Feature Engineering

Firstly, we created three different columns from the column author by one hot encoding. To
see the high-level differences between authors, we looked at the lengths of text sequences
of training set by individual authors, number of characters and number of unique words
used. Other features were number of punctuation marks used, mean text lengths, number
of stopwords used, number of uppercase and titlecase words (e.g. "THE" is an uppercase
word and "The" is a titlecase word). Figure 1 is the correlation matrix of these features
with other features including our classes.

Figure 1: Correlation matrix between features and classes.

Clearly, features n_words (Count of words), n_chars (Count of characters), n_stopwords
(Count of stopwords) and n_unique_words (Count of unique words) have a high positive
correlation among themselves.

These correlations are numerically represented in the Table 3.
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Features EAP HPL MWS
n_words -0.055617 0.035682 0.024094
n_unique_words -0.075854 0.061497 0.020287
n_char -0.052609 0.040393 0.016284
n_stopwords -0.036248 -0.002282 0.040732
n_punctuations 0.092105 -0.11667 0.016527
n_uppercase -0.037984 -0.063259 0.102336
n_title -0.030793 0.051317 -0.017591
mean_length 0.028093 0.000395 -0.030221

Table 3: Correlation between features and author classes.

While the correlations between authors and features are not large, there are some dif-
ferences with their correlations with individual authors, e.g. n_words, n_words, n_char,
n_stopwords are negatively correlated with class EAP but positively correlated with other
authors. Features mean_length and n_title are negatively correlated with MWS while
positively correlated with HPL and mean_length is positively correlated with HPL.

The figure 2 represents the most frequent words used over all authors while the figures
3, 4 and 5 show the most frequent words used by each author. Evidently, words like "upon",
"time", and "will" are used by all authors quite frequently.

Figure 2: Word cloud for entire training texts.

Figure 3: Word cloud for EAP (Edgar Allan Poe).
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Figure 4: Word cloud for HPL (H.P. Lovecraft).

Figure 5: Word cloud for MWS (Mary Shelley).

Since there are obvious, however little, differences between these features and classes and
there are many common words used by all authors, it is interesting to look at their usage
of n-grams 7 (after removing stopwords (from nltk [12])). The frequency usage of 2-,3- and
4-grams of the authors are presented in the tables 4, 5 and 6.

2 gram Count 3 gram Count 4 gram Count
let us 50 madame l espanaye 12 general john b c 12
one two 23 john b c 12 brigadier general john b 7
three four 23 general john b 12 ugh ugh ugh ugh 6
l etoile 23 ha ha ha 11 brevet brigadier general john 6
ha ha 22 barrière du roule 10 john b c smith 6

Table 4: 2-, 3- and 4- gram frequencies for Edgar Allan Poe (EAP class).

7An n-gram is a continuous sequence of n-terms. These terms can either be characters or words. e.g."Here I
go" is a 3-gram and "Here I" is a 2-gram [9]
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2 gram Count 3 gram Count 4 gram Count
old man 59 terrible old man 9 aira city marble beryl 4
could see 31 heh heh heh 9 oonai city lutes dancing 4
one night 23 charles le sorcier 8 eric moreland clapham lee 4
old woman 21 small paned windows 8 mad arab abdul alhazred 4
one might 18 great great great 6 necronomicon mad arab abdul 4

Table 5: 2-, 3- and 4- gram frequencies for H.P. Lovercraft (HPL class).

2 gram Count 3 gram Count 4 gram Count
old man 29 let us go 4 next day next hour 2
lord raymond 28 months elapsed since 3 one day may claim 2
fellow creatures 22 time lord raymond 3 five years old mother 2
one day 20 nearly two years 3 day may claim hands 2
let us 16 first rank among 3 like thousand packs wolves 2

Table 6: 2-, 3- and 4- gram frequencies for Mary Shelley (MWS class).

So, although there are some most-used words overall that are used by all authors fre-
quently, there are different in their usage of 2-,3- and 4-grams. We also noticed that
there were some errors in the formatting of sentences. This was expected as as per the
competition, there were some odd sentences and mistakes in parsing of the text [1].

To use n-grams, we used tfidf and count vectorizers from module sklearn.feature_extrac-
tion.text [14]. tfidf vectorizer 8converts the text data to a matrix of TF-IDF (term fre-
quency - Inverse document frequency) features, and count vectorizer converts the text data
to a matrix of counts of each index token. For both the Count and TF-IDF vectorizers, we
transformed the text data to vectors for 1-3 and 3-7 grams and in both cases, we kept the
distinction between lower and upper cases since we have seen there is some difference,
however small, among the authors in their usage of capital letters (as signified by features
n_title and n_upper).

In aspiration of using these features later on, we added these features (including TFIDF
and Count vector matrices) to our original train set creating a separate train set containing
them.

4.1 Data Augmentation

Our dataset is relatively small with 19579 text sequences and many of these sequences are
not very long as evident in the distribution of number of words in the texts of each author

8tfidf and count vectorizers of sklearn:https://scikit-learn.org/stable/modules/classes.htmlmodule-
sklearn.feature_extraction.text
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in the Figure 6.

Figure 6: Distribution of number of words per text sequence for each author. From left to
right - EAP, HPL, MWS.

Most text sequences are within the range of 0-50. To augment text data, therefore slicing
through texts is not a good option here. To better do the data augmentation task, we used
back-translation [19][7][23]. We translated dataset from English to French and then back to
English using an API googletrans 9 that uses Google Translate 10 for processing translation
requests. Even though the API requests to the API googletrans are unlimited, due to
some compatibility issues, the resource limit ran out after around 500 text translations,
therefore, we could only do the translation from English to French for 500 texts. Thereafter,
we translated the French texts to English and added to our dataset. We kept the datasets
both with back-translation as well as without back-translation to compare the performance.
The comparison is made in the section 5. and it has shown to improve the performance on
the validation sets. This is understandable since back-translation has not only increased
the size of the data but has also provided a regularization due to translations not being
perfect [24].

5. Deep Neural Networks (Without Recurrent Layers)

We started from a simple model without any recurrent layer. We used a tokenizer from
keras [6]’ preprocessing module to tokenize the sequences with parameters num_words=20000
(The maximum number of words to keep) and lower=True (i.e. covert the text to lowercase).
The input list of sequences were padded with a maximum length of 256.

9googletrans: https://pypi.org/project/googletrans/
10Google Translate: https://translate.google.com/
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Layer (type) Output shape Parameters
embedding_1 (Embedding) (None, 256, 20) 521180
global_average_pooling1d_1 (None, 20) 0
dense_1 (Dense) (None, 3) 63
Total Params: 521,243 Trainable params: 521,243 Non-trainable params: 0

Table 7: Model (Without recurrent layers) Architecture.

To train the model, we used early stopping callback option with a patience of 10 epoch to
monitor the validation categorical cross-entropy. For training, 10% of data was used for
validation.

To compare the performance of our data augmentation, we trained two models for data
with and without the back-translation data augmentation. The data was preprocessed to
remove stopwords. The results are presented in figures 7 and 8 respectively.

Figure 7: Model loss (Right) and accuracy (Left) - With back translation (Validation loss =
0.3128).
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Figure 8: Model loss (Right) and accuracy (Left) - Without back translation (Validation loss
= 0.368).

For both these train sets, the model seems to converge after 30 epochs and the loss curve
has reached a plateau. For our data augmentation, we used only 500 training samples to
translate to French and then back to English. Doing this resulted in an accuracy increase
(0.88 vs 0.86) and loss decrease (0.3128 vs 0.368). Also, the public scores on the test set
were 0.385 and 0.396 respectively for with and without data augmentation. The private
scores on the other hand were much better for the back translation (0.365 as opposed
to 0.38). There is clearly an overfitting due to the small data size and when we do data
augmentation using back translation, it has led to some regularization as well because the
translations are not perfect. Therefore, we decided to use the data with back translation
augmentation for all our models.

We also trained a model without removing stopwords. This was interesting to check
because during our preprocessing, we have seen that there was some correlation between
the author class and the number of stopwords used. The architecture of this model is the
same as before and as mentioned, we have included the back translated data as well. To
test the convergence of the mdoel more accurately, we decided to increase the number of
epochs to 50. The results are presented below in the figure 11
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Figure 9: Model loss (Right) and accuracy (Left) - Without removing stopwords.

There is a slightly upward trend in the loss curve after 35 epochs. Therefore, we decided to
keep the model after 30 epochs as we do not want to overfit. The validation loss was 0.31
and on kaggle test set, the public score obtained was 0.37 with private score being 0.360.
Since, our validation loss is slightly better without removing the stopwords. We decided
to keep the stopwords as they seem to provide additional information about an author’s
literary style.

5.1 Transfer Learning with Pre-trained GloVe Embedding:

To better train the neural networks, it is a common approach to use pre-trained models or
a part of models. To test this hypothesis in our dataset, we also trained a model with pre-
trained embeddings. In particular, we trained two models with "trainable" hyperpramater
= True (i.e.to retrain the embedding to suit our data) and False (i.e. to use the embedding
as it is). We used Global Vectors for word representation (GloVe) embedding with 50
dimensions vectors [15] with callback option to monitor decrease in log loss with patience
of 10 epochs. The model was stoppped after 25 epochs of initial 30 epochs as the validation
log loss did not improve after 10 epochs. With trainable = False, the performance was worse
with validation log loss 0.85 and validation accuracy 0.62 as expected, since the model was
not retrained for our data. For trainable = False, The validation log loss was 0.38 which is
substantially less than our validation log-loss of 0.312 and validation accuracy of 0.87 from
our previous model. On test set as well, the public log loss was 0.41 and private log loss
was 0.39.
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Figure 10: Model loss (Right) and accuracy (Left) - Without retraining GloVe embedding.

Figure 11: Model loss (Right) and accuracy (Left) - Retraining GloVe embedding.

Since the pre-trained embedding did not provide much advantage in our training, infact
the performance was slightly worse even after retraining for our data, in the best model so
far, we decided to not include the pre-trained embeddings. We further tried 100d as well as
300d versions of the GloVe embeddings, however, the performance was similar as the 50d.

6. Recurrent Networks

In this section, we have explored the training on the Spooky Author Identification dataset
using recurrent as well as convolutional layers in our models. The training dataset included
the dataset with back-translation as the performance has been better as seen in figures
7 and 8. We started by including one LSTM layer in our model. The architecture of this
model is given below.

16



Layer (type) Output shape Parameters
embedding_8 (Embedding) (None, None, 128) 3335552
dropout_13 (Dropout) (None, None, 128) 0
lstm_3 (LSTM) (None, None, 128) 131584
global_max_pooling1d_8 (None, 128) 0
dense_17 (Dense) (None, 3) 387
Total params: 3,467,523 Trainable params: 3,467,523 Non-trainable params: 0

Table 8: Recurrent Model Architecture.

We trained this model with our tokenized training set without removing stopwords (An
observation made in the Section 5.) We used callbacks to monitor the validation log-loss
with a patience of 3. The model stoppped after 4 epochs as the validation loss didn’t
decrease. The performance of this model is substantially lower than what we have seen in
our previous model. The validation log loss was 0.40 with validation accuracy 0.87. We
decided to try the model without adding the dropout layer after embedding layer to see if
we can improve. The log-loss on the training set decreased, however the validation log-loss
increased which was expected because here we are clearly overfitting and not regularizing
by removing the dropout layer. The validation accuracy and log loss curves are given in
figure 13 .

Figure 12: Model loss (Right) and accuracy (Left) - With dropout.

Clearly, the model’s validation log-loss (With and without dropout layers) increased after 2
epochs and even stopped after 3 epochs by including a callbacks. Therefore, we kept the
model after training of 2 epochs and we observed a validation log loss of 0.38. The Kaggle
score on this model was 0.44.

Next, we decided to include bidirectional recurrent layer followed by a convolutional layer
in our model. After running several experiments, we also decided to reduce the output
shapes of the embedding layer thus decreasing the number of parameters to be trained.
For convolutions we chose the kernel size to be 3 (We also experimented with other sizes
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and found this to be the best). The model’s architecture is given below.

Layer (type) Output shape Parameters
embedding_1 (Embedding) (None, None, 30) 781770
dropout_1 (Dropout) (None, None, 30) 0
bidirectional_1 (Bidirectional) (None, None, 256) 122112
conv1d_1 (Conv1D) (None, None, 64) 49216
global_max_pooling1d_1 (None, 64) 0
dense_1 (Dense) (None, 15) 975
dense_2 (Dense) (None, 3) 48
Total params: 954,121 Trainable params: 954,121 Non-trainable params: 0

Table 9: Recurrent Model Architecture with Bidirectional and Convolutional layers (Kernel
size=3).

Figure 13: Model loss (Right) and accuracy (Left) - Without the convolutional layer. The
Validation loss increased after the 3rd epochs and the training stopped after the callback
option and did not complete specified 5 epochs. We kept the model till the 3rd epoch.
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Figure 14: Model loss (Right) and accuracy (Left) - With the convolutional layer. The
validation accuracy (0.88) plateau after the 3rd epochs and same for validation loss (0.36).
We kept the model till the 3rd epoch.

We tested the model by excluding the convolutional layer from our model. After training
for 3 epochs the model had a validation log loss of 0.33 and validation accuracy of 0.89. On
the kaggle test set, the score was 0.42 (Public: 0.44, Private: 0.42) which is better than our
last model. Therefore, we found this to be our best recurrent model. The loss and accuracy
curves are given in the Figure 14.

7. An Ensemble of Deep Neural Networks

To test whether an ensemble can be good on our dataset, we decided to naively take
weighted average of predictions from the best models described in the sections 5. and 6..
The individual test log loss (Public) for these models were 0.385 and 0.44 respectively. By
averaging (80 for the best model from the section 5. and 20 for the best model from the
section 6.), we observed a validation log loss of 0.30 and on Kaggle, the score was 0.380
(public) and 0.350 (private). This motivated us to further utilize the ensemble of neural
networks. This also opened a room for utilizing the engineering features and information
that we gathered in 4..

We looked to ensemble three independent models that were trained to do independent
tasks as mentioned in the Table 11. To select the best generalized model on all subsets
of training and validation sets, we used KFold splits (K=3). In training these individual
models, we were not looking to select the model that performs best on a validation set
but rather, the model that performs best on all splits of train-validation sets. We did
not take into account the test set for selecting the best model for each of these settings.
For cross-validating and generating output predictions for both training and test set, we
created three different functions - one for each of the methods, to better use them. The
time complexity of cross-validation is high (1̃ hour on a GPU for the longest running model
for one 3 fold validation), however, since the data is small, the run time is not very high
as we can expect in a bigger size data. To later use output predictions by these models,
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we saved two sets of these features - one containing only the model predictions, and one
containing the model predictions as well as the features described in the Section 4.

To gain information from the TF-IDF and Count features, we used a model which has
architecture as in Table 10.

Layer (type) Output Shape Parameters
dense_1 (Dense) (None, 10) 8850130
dense_2 (Dense) (None, 3) 33
Total params: 8,850,163 Trainable params: 8,850,163 Non-trainable params: 0

Table 10: Model for TF-IDF and Count-vectorized matrices.

The validation accuracy and categorical cross-entropy curves for this model (trained on
TF-IDF vectors) are given in the Figure 15. The model achieves a validation loss of 0.31.

Figure 15: Validation loss (left) and accuracy (Right) for the model trained with TF-IDF.
The validation loss as well as accuracy converges after 1 epoch.

Model Input
Recurrent without Bidirectional, Padded tokenized sequences
convolutional and Max pooling layers (As described in the section 6.)
Without recurrent layers (As described in the section 5.) Padded Tokenized sequences
Model with 1 hidden Dense layer (As described in the Table 10 TF-IDF 1-3 gram
Model with 1 hidden layer (As described in the Table 10) TF-IDF 3-7 gram
Model with 1 hidden layer (As described in the Table 10) Count (TF) 1-3 gram
Model with 1 hidden layer (As described in the Table 10) Count (TF) 3-7 gram

Table 11: Models used in ensemble after cross-validation.
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Figure 16: Kaggle submission page for prediction with an ensemble of neural network
outputs.

For our final recurrent model to be included in the ensemble, we used a model with an
LSTM layer as described in the Section 6. but without the pooling layer since it provided
better performance over all validation splits. We also made slight changes in the maximum
padded sequence length (150 as opposed to 256 previously. This was done for the same
reason as well). To ensemble the models, we used xgboost [5]. For ensemble itself, we
used KFold cross-validation (K=3), and we predicted the outcomes on the test set. The
validation loss for this ensemble was 0.31 over all 3-Fold splits with the Kaggle score being
0.29 as seen in the figure 16. By including the selected engineered features (n_words,
n_counts, n_stopwords, n_punctuation, n_char and n_mean_length) from the section 4. in
our ensemble, we were able to further improved the model with a private score of 0.28
which would have placed us comfortably in the top 200 of the Kaggle leaderboard if the
competition was still active.

8. Deployment

We deployed the model using flask, Keras and Deep Learning REST API [17]. This API
uses our best individual model (Validation log loss 0.31 and Kaggle score of 0.35) as opposed
to ensemble which has a much better Kaggle score of 0.29. We built an API for a simpler
model for providing better time complexity. The API is optimized to process text fast. This
is particularly helpful since to make predictions, the model first has to tokenize as well
as pad the text sequences. On our machine, once loaded in the browser (we request the
user to follow the command instructions and use a Chrome 11 browser), API was able to
process the requests within 1-3 seconds. It can be run using command flask run in the
webapp directory and can be used as an web application. The interface accepts text of
any size and outputs proabbailties for it to be written by each author. The demonstration
is present in the figures 18 and 17.

11Google Chrome: https://www.google.com/chrome/
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Figure 17: Model Deployment - API server.

Figure 18: Model Deployment - Web application Interface
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9. Conclusion and Further Work

We have shown that with good preprocessing and feature engineering techniques such as
data augmentation using back-translation and by constructing matrices of n-gram vectors,
it is possible to build models even with simple architectures to accomplish a multi-class
classification task on a small text dataset. We also see that it is best to start from simpler
models to avoid the risk of overfitting as well as to gain idea about baselines. With our
pre-processing and data augmentation, we accomplished around 90% validation accuracy
and validation log-loss of 0.31 with test validation score of 0.35 (which as per the competi-
tion leaderboard) is quite good for a pure deep learning based method. By using advanced
models such as recurrent layers in addition to simple models, we have shown that we can
further improve the model. Finally, by ensembling the models that were relatively weak
individually, we achieved a much higher accuracy as well as a good log-loss on various
validation sets as well as on the test set. With a log-loss of 0.29 and accuracy of over 90%,
we have succeeed in our task of author identification. Finally, we also deployed the model
as an API using flask and keras which is fast and can process a large amount of text.

In our work, we explored one pre-trained embedding - GloVe. In future, we can attempt
to improve the model by using other embeddings such as Word2vec to explore transfer
learning further. Further, since there was a limitation as explained in the Section in
augmenting data to more than 500 texts, we can explore back-translation further. Due
to the usage of an external API and limited number of requests, we could only use 500
samples of our dataset to back-translate. In future, we may try to find better ways to do so,
this may further improve the training and performance of our methods.

We would leave the reader with the following beautiful quote from the beloved author of
Frankenstein -

"Invention, it must be humbly admitted, does not consist in creating out of void, but out
of chaos", Frankenstein, 1831, Mary Shelley. [16].
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